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Many Neurobiologists dislike Statistics, and many more are disheartened by the underlying 

Mathematics. Too few properly apply the most commonly used tests in Neurobiology, the t-test 

and ANOVA. And too few understand the meaning of the p-value, the probability we calculate to 

determine if an experiment “worked”. Truth be told, most statisticians speak what seems to us 

biologist an obscure, arcane language that we do not know how to translate into our own research. 

As a Neurobiologist who loves Mathematics and Statistics, here I will try to reach my fellow 

researchers and put in lay terms the fundamental basis of the most common statistical analysis 

used in modern Neurobiology. Of course, analogies and simple explanations do not convey the 

full complexity of Statistics. My hope is that this text can serve as an introduction to understand 

basic concepts and prompt researchers to read more specialized texts. But before we dig deeper 

into the meaning of the p-value in t-test and ANOVA, let us examine what it means to perform an 

experiment. 

 

Of experiments and marbles 

Performing an experiment is akin to putting our hands into a bag of marbles and picking up a few 

of them to figure out how large the marbles in the bag are. We can calculate the average marble 

size of our handful and assume that the rest of the marbles in the bag will have the same size. In 

more proper terms what we do is to estimate the variable of interest (marble size) in the population 

(the bag) from the calculation performed in our sample (the handful) (Figure 1). It is obvious that 

this estimation will be better if we have a large handful than a small one. Similarly, the estimation 

will be better if the original population is rather homogeneous, i.e., if most marbles have a similar 

size. Therefore, both sample size and variability influence the fitness of our estimation (Figure 1). 

 

In Neurobiology, each experiment is like a handful of marbles collected from an infinite, 

unfathomable bag. Let´s say we want to estimate the number of neurons in a particular strain of 

mice, or the expression of a certain gene after our astrocytes are treated with a novel drug. We 
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would put our hands into the infinite-sized bags of mice or cells and collect a sample of n-size. 

We would then analyze this sample to calculate our variable of choice (number of neurons, gene 

expression). However, at this point most of us do not realize that we are using this calculation in 

our sample to estimate the value of the variable in the original population. In addition, most of us 

do not realize that our estimation may not be very good if the sample size is too small, particularly 

if the biological variability of our parameter is high. What is even worse, we never get to analyze 

the infinite number of mice of a particular strain, nor the infinite number of cells treated with our 

drug of choice to compare with our sample and, therefore, we can never be sure how good our 

estimation is. Despite this intrinsic uncertainty, these three concepts, sampling, estimation, and 

variability are the fundamental core of most statistical tests.  

 

 

 

 

 

The most commonly used test to compare our variable of interest between two groups is the 

Student´s t-test (Note 1). In the marble analog, you can imagine a blinded researcher pulling out 

her hand to pick up two consecutive handfuls of marbles: one handful for the control group (wild 

type mice, untreated cells, etc); and another handful for our treatment of interest. The question 

asked then is: were the two handfuls collected from the same bag or from two different bags? 

This is precisely what the t-test tries to answer: whether the samples collected belong to the same 

population, as is stated in the null hypothesis (H0); or, in contrast, whether they belong to different 

populations, as is stated in the alternative hypothesis (H1) (Figure 2). To determine the likelihood 

of the samples from each group are the same (A = B) or are different (A ≠ B), the t-test compares 

 

Note 1. ANOVA (ANalysis Of VAriance) is used to compare more than two groups, but the principles behind its testing 

are similar to those of the t-test: comparing variability between groups and within groups. 

Note 2. The variability of a variable is determined by the standard deviation, the standard error of the mean, or the 

confidence interval of the mean estimation and, in the end, is just a measurement of how spread the values of our 

variable are. 

Figure 1. Population parameters are 

estimated from sample parameters. (A) 

To determine the size (population mean ± 

variance) of infinite marbles contained in a 

bag, we 1, pick up a handful of marbles (a 

sample); 2, calculate the marble size in the 

handful (sample mean ± variance); and 3, 

use these values to estimate the marble size 

in the population. (B) The estimation fitness 

depends on two main parameters: sample 

size and variability. Large sample sizes and 

small sample variability allow good 

estimations of population parameters. 
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the variability within each group with the variability between groups (Note 2).  When there is a 

clear-cut separation between the spread of each group it seems evident that they belong to 

different populations, that is, the groups are different.  

 

 

 

A sigh of relief: when your p value is less than 5% 

The t-test transforms the comparison of the within-group and between-groups variability into a 

mathematical function called t distribution, which assigns a probability to each t-value (Note 3). 

This probability is what we call the p-value: the smaller the p-value, the less likely it is that our 

group samples come from the same population, or that our handfuls of marbles come from the 

same bag. And, what is the threshold to determine if the p-value is small enough or not? This 

threshold is called alpha level and is conventionally set at a maximum value of =0.05 (5%). If 

our p-value is less than alpha=0.05 we sigh of relief and determine that our experimental 

manipulation (mouse strain, cell treatment) had a significant effect. In our marbles experiment, 

what the p-value then tells us is how likely it is that we obtained one handful of cherry-sized 

marbles and another handful of peach-sized marbles if they came from the same bag. 

 

 

Note 3. Both the t-test and ANOVA are called “parametric tests” because they require compliance with two assumptions 

on the two main parameters that affect the distribution of the data (normality and equal variances), and this is discussed 

in more detail in Statistics for Neurodummies II: Statistical tongue twisters: on normality and homoscedasticity and why 

they are important in t-test and ANOVA. 

Figure 2. T-test are used to compare 

whether two samples belong to the same 

population. (A) Formally, the t-test serves to 

disregard the null hypothesis (H0): whether 

two handfuls (samples) of marbles (light and 

dark blue, A and B) come from the same 

population (A=B), that is, whether they are 

picked from the same marble bag. In the 

alternative hypothesis (H1), the samples 

come from different populations (A≠B), that 

is, they are picked from different marble bags 

(light brown and dark brown). (B) The t-test 

calculates the probability of picking up 

samples as different as A and B if in fact 

A=B. When this p-value is below the 

established significance level (usually set at 

=0.05), it means that it is very unlikely that 

A=B and therefore we conclude that our data 

is compatible with A≠B. In contrast, when 

p>0.05 we cannot reach a conclusion and we 

can just report that no significant differences 

were found. 

 



4 
 

However, it is important to recall at this time that the calculation of the p-value depends on our 

estimations of the variable of interest in the population based on our samples. As said above, our 

estimation depends on both the size of the sample and the variability of the populations. In 

addition, when comparing two populations, the likelihood of finding statistically significant effects 

also depends on the magnitude of the effect: if one bag contains cherry-sized marbles and the 

other one peach-sized marbles, regardless of how small our handfuls are (or how poor our 

sampling is), it is very likely that we can detect significant differences. Finally, another major factor 

is whether the marbles in each bag are picked randomly, without any bias. Imagine for instance 

that the first handful is picked by a child and the second one by an adult: it is evident that the child 

handful will likely contain smaller marbles than the adult handful. Importantly, we may not be 

aware of all the sources of bias in our experiments. In summary, all these factors – sample size, 

variability, effect size and lack of bias affect our chances of getting a significant p-value (Figure 

3). 

 

If we were to repeat the experiment and grab another handful of marbles, it is unlikely that we 

would get an identical marble size estimation and therefore we would get a different p-value to 

assess whether our marbles were of different size. In fact, if our two groups of marbles were 

identical (i.e., came from the same bag) and we repeated the experiment 100 times and collected 

100 different pairs of handfuls, we would be satisfied if by chance we obtained a significant 

difference only 5% of the times (Note 4). Therefore, one should treat experiments with significant 

differences (p<0.05) with care, because we may have gotten it by chance, or due to poor sampling 

or some experimental bias. For this reason, many Statisticians have asked us to change our 

perspective of the p-value and replace “certainty” with “compatibility” (Amrhein et al., 2019): 

p<0.05 does not mean our hypothesis is true and the two populations where the samples come 

from are surely different. Rather, it means that the evidence we collected in our samples is 

compatible with the populations being different (Figure 2), provided that our sampling is good 

enough and we do not have uncontrolled biases (Figure 3). 

 

Beware of your p>0.05  

A mirroring problem is assuming that when p>0.05, the two groups compared are equal, or that 

the two handful of marbles necessarily come from the same bag. This interpretation of p>0.05 is 

a common problem in Neurobiology (Nieuwenhuis et al., 2011) and papers abound in which the 

lack of significant effect of an experimental manipulation (a drug, a genotype, etc) is immediately 

interpreted as this manipulation having no effect. Imagine an experimental setup in which you 

want to test a library of compounds to determine those that affect the expression of your gene of 

interest. You would be initially interested in those compounds that result in a significant change 

 

Note 4. This is the reason why the p-value needs to be corrected when multiple tests are run (some classical examples 

are ANOVA post-hoc tests and, in general, all statistics used to analyze -omics data): the more tests, the higher the 

chances that some will result in a significant p-value even when in fact there are no differences (Jafari and Ansari-Pour, 

2019). 
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in expression, but would you be so sure that the rest of the compounds did not affect your target 

gene? Is it possible that parameters like compound concentration or incubation time were not 

optimal for all compounds? Can pipetting errors or other experimental issues be completely 

disregarded? The answer is obviously no, they cannot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The reliability of t-tests depends on several parameters. (A) The estimation of population parameters 

is affected by both sample size and variability, which depends both on the biological variability of the population as 

well as on the accuracy of the technique used for the measurement. Large sample sizes and smaller sample 

variances allow good estimations of population parameters. In addition, it is easier to detect differences between 

populations when the magnitude of the effect is large (in particular, when it is larger than the sample variability). 

Finally, the presence of known or unknown biases will also affect our capacity to detect significant changes. (B) 

Examples of experimental conditions that impact our estimation of the effect, that is, the difference between the 

groups A and B. The bars represent the mean ± SEM (standard error of the mean) that result from the individual 

data points (represented as dots). On the left, small samples size, large variability and a small effect lead to a poor 

estimation and render the results of the t-test very unreliable (regardless of whether the p-value is significant or 

not). On the right, the sampling is improved and the effect is larger. In addition, the A group has the same spread 

than on the right panel (the extreme values are identical) but now the calculated SEM is reduced because of the 

larger sample size. In the B group, the spread of the data points is reduced on the left panel compared to the right 

panel. These three conditions, increased sampling, reduced variability and larger effect magnitude, allow us to 

better estimate whether A and B are, in fact, different. C, examples of routes to take to increase our confidence in 

the statistical analysis performed: explore the data to understand causes of variability and bias; perform power 

analysis to determine the required sample size to reach significance; complement the analysis with other types of 

statistics; and most of all, build up independent pieces of evidence to support our hypothesis. 
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If this is so evident, why do generations of Neuroscience researchers keep falling in this trap? 

Because it seems intuitive (although incorrect) that if low p values are interpreted as statistical 

support for A ≠ B (alternative hypothesis), high p-values should be interpreted as statistical 

support for A = B (null hypothesis). Intuition, however, would lead us astray here: due to the 

underlying mathematics of the t-distribution, higher p-values do not provide support for the null 

hypothesis (Keysers et al., 2020) and therefore a t-test can never be used to conclude that an 

experimental manipulation had no effect. Therefore, as initially posed by Altman and Bland 

already in 1995: “Absence of evidence is not evidence of absence” (Altman and Bland, 1995). Or 

as more recently stated by Armhein and colleagues: “We should never conclude there is ‘no 

difference’ or ‘no association’ just because p>0.05” (Amrhein et al., 2019).  

 

The only valid conclusion of a t-test resulting in a p-value above the threshold for significance is 

that no significant effects were found (Makin and Orban de Xivry, 2019). And it should be 

acknowledged that this lack of significance could be either because in fact there was no effect; or 

because poor sampling, large variability, an effect of small magnitude, biases, or not optimized 

experimental conditions prevented us from reaching a conclusion. How can we then extract useful 

information from non-significant experiments? I am proposing here three possible routes: 1, 

explore your data; 2, perform power analysis; and 3, investigate novel statistical tools (Figure 

3C).  

 

The first step is obviously spending some quality time with your data to determine whether the 

problem is small sample size or large variability (including the presence of biological or technical 

outliers), and discover potential biases. It is also important to understand the magnitude of your 

effect (Note 5): are you discussing a 10% effect or a 200% effect? In the second case, even if no 

significant effects were found it may be worth pursuing further tests.  To help us decide whether 

increasing sample size would allow us to reach statistical significance, given the expected effect 

magnitude observed in our preliminary experiments, we can perform power calculations (Button 

et al., 2013). A power above 0.8 (i.e., when 8 out of 10 experiments find statistical difference when 

the groups are in fact different) is usually considered sufficient. The larger the magnitude of the 

effect and the smaller the biological variability of the samples, the smaller the sample size needed 

to reach statistical significance.  

 

Finally, researchers should be confident to explore beyond the t-test (Bernard, 2019). The 

information provided by t-test is limited, as they can only produce yes-or-no responses: are 

marbles in the two handfuls are the same (or not)? In contrast, estimation tests that measure the 

magnitude of the effect paint a broader picture:  how much larger is the second handful of 

marbles? (Calin-Jageman and Cumming, 2019). Estimation statistics compare the effect size of 

 

Note 5. For both t-test and ANOVA, an interesting parameter that allows comparing the magnitude of the effect of different 

variables is eta squared (2) (Lakens, 2013).  
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the experimental manipulation using confidence intervals determined by bootstrap resampling of 

the observations (https://www.estimationstats.com/#/). Another interesting approach is Bayesian 

hypothesis testing, which directly tests the plausibility of both the null and the alternate hypothesis 

(Keysers et al., 2020) and therefore can be used to attest both positive and negative effects.  

 

At this point, some researchers may be pulling their hairs off and thinking that experimental 

Neurobiology is doomed. But do not despair, my friends. How do we live with the intrinsic 

uncertainty of Statistics in the experimental world? Easy enough, by performing complementary 

sets of experiments using different techniques that then allow us to build up independent pieces 

of evidence to support our initial hypothesis (Figure 3C).  

 

 

Concluding remarks 

In summary, in a t-test, low p-values can be used to determine that a certain experimental 

manipulation had a significant effect, but we need to be reminded that it may have happened by 

chance, just as it would if we were pulling handfuls of marbles out of a bag. Even more importantly, 

high p-values are inconclusive and cannot be used to claim that the manipulation had no effect; 

rather, they may result from bad sampling or poor experimental design. And, of course, never 

forget that setting the alpha level to 0.05 is simply arbitrary: there is nothing magic about the 5% 

threshold. P-values of 0.049 and 0.051 surely imply highly similar effects, even if one is just below 

and the other is just above the threshold. Furthermore, researchers should be aware that 

statistical significance does not necessarily involve biological relevance. The p-value cannot 

summarize the whole complexity of the biological data in our experiments and this is the reason 

why many experts claim to start using confidence intervals to measure the magnitude of the effect. 

Overall, we need to acknowledge that Statistics is just a tool that we use to agree on whether 

something is likely to happen or not. I hope that from visualizing marbles researchers can 

extrapolate the meaning of the p-value to their own experiments.  

https://www.estimationstats.com/#/
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